
Web Application Interacting with Database

Java Database Connectivity

Kiều Trọng Khánh

Review
• How to build the simple web site using html and servlet?

– Break down structure component in building web application

• Some concepts

– Servlet vs. Java class, Parameter vs. Variable

– Form Parameters

– Http Protocol

– HTTP Methods: GET, POST, …

– Servlet Life Cycle

(init, service, destroy)

Web Server

Container

C

V

DBDAO

1. Send request 2. Call

3. Query

4. Render/Send

5. Response

6. Display

Review

Client Server

1. Input and

click button/link

OS

2. Generate the

Request msg

Web/App

Server

3. Send request 4. Dispatch to Servlet/Web Container
Containter

Request

Object

5. Container

create Req Obj

Resources

6. Forward

DB

7.retrieve

data (if any)

Response

Object

8. Set Val9. Create

Response Msg

10. Send response

Review

Client Server

1. Input and

click button/link

OS

2. Generate the

Request msg

Web/App

Server

3. Send request 4. Dispatch to Servlet/Web Container
Containter

Request

Object

5. Container

create Req Obj

Resources

6. Forward

DB

7.retrieve

data (if any)

Response

Object

8. Set Val9. Create

Response Msg

10. Send response

Objectives

• How to access database from web application?

– JDBC

– Relational Database Overview

– JDBC and JDBC Drivers

– JDBC Basics: Processing SQL Statements

– Implement CRUD application using MS SQL

Objectives

Web based
App - PBL

Web

Day 1, 2, 3 – Login

Servlet

Day 7, 8, 9 – Search

Break Down

Day 10, 11 – MVC2

JSP

Day 12, 13, 14, 15 – CUD, Shopping Carts

Sessions

Day 16, 17 – Login

JavaBeans

Day 18, 19, 20 – CRUD

MVC 2 Complete - JSTL - Taglib

Day 21, 22, 23 – Filter

MVC2 Using Filter as Controller

4, 5, 6 – JDBC

Login

Overview
DB vs. DBMS

• Databases

– Are collection of related data which are stored in secondary

mass storage and are used by some processes concurrently.

– Are organized in some ways in order to reduce redundancies.

• DBMS: Database management system

– Is a software which manages some databases.

– Supports ways to users/processes for creating, updating,

manipulating on databases and security mechanisms are

supported also.

– DBMS libraries (C/C++ codes are usually used) support APIs

for user programs to manipulate databases.

Overview
Relational DB

• Presents information in tables with rows and columns.

– A table is referred to as a relation in the sense that it is a

collection of objects of the same type (rows).

• A Relational Database Management System (RDBMS)

– Handles the way data is stored, maintained, and retrieved.

– Ex: MS Access, MS SQL Server, Oracle

RDBMS
Structure Query Language (SQL)

• Common DML – Data Manipulating Language queries.

– SELECT columns FROM tables [WHERE condition]

– UPDATE table SET column=value,… WHERE condition

– DELETE FROM table WHERE condition

– INSERT INTO table (col1, col2,…) VALUES (val1, val2,…)

JDBC
Overview

• Java Database Connectivity

– Is an application programming interface (API) for the

programming language Java, which defines how a

client may access a database
– Provides access to DB and performs DB operations –

CRUD(Create, Read, Update, Delete)

JDBC
API

• The JDBC™ API

– Was designed to keep simple things simple such as

executing common SQL statements, and performing

other objectives common to database applications

– Is a Java API that can access any kind of tabular data,

especially data stored in a Relational Database.

– Executes simple SQL queries in the Java code to

retrieve data from database

– The java.sql.* and javax.sql.* package provides

database access in Java through directly or indirectly

(Data source – flexible), and provides classes and

interfaces that are used to interact with the database

JDBC
API

• JDBC APIs has 02 parts in the java.sql package

Part Details Purposes

JDBC

Driver

DriverManager

class

java.lang.Class.forName(DriverClass) will

dynamically load the concrete driver class, provided

by a specific provider for a specific database.

This class implemented methods declared in JDBC

interfaces.

The class DriverManager will get a connection to

database based on the specific driver class loaded.

JDBC API Interfaces:

Connection,

Statement

ResultSet

DatabaseMetadata

ResultSetMetadata

Classes

SQLException

For creating a connection to a DBMS

For executing SQL statements

For storing result data set and achieving columns

For getting database metadata

For getting resultset metadata

Refer to the java.sql package for more details in Java documentation

JDBC
API

Java App.

Connection con

Specific JDBC Driver

implement interfaces

(loaded dynamically

by java.lang.Class)

DriverManager

getConnection()

Statement stmt ResultSet rs

Process rs

createStatement()

executeQuery()

Model of a JDBC App.
Database

MSI
Highlight

JDBC
API

• DBMS provider/developer will supply a package
in which specific classes implementing standard
JDBC driver (free).

• Based on characteristics of DBMSs, four types of
JDBC drivers are:
– Type 1: JDBC ODBC

– Type 2: Native API

– Type 3: Network Protocol

– Type 4: Native Protocol

• Type 1 and Type 4 are populated.

JDBC
Drivers

• Translates Java statements to SQL statements

• Helps applications to interact with the database, using
Java’s built-in Driver Manager

• JDBC driver manager maintains a list of drivers created
for different databases

• JDBC drivers connect the Java application to the driver
specified in the Java program

• The four types of JDBC drivers are:
– Type 1: JDBC ODBC

– Type 2: Native API

– Type 3: Network Protocol

– Type 4: Native Protocol

– Type 1 & Type 4 is populated

JDBC
Type 1-Driver: JDBC-ODBC Bridge

Java Application

Type I JDBC-ODBC

Bridge

SQL Command Result Set

Application

MS ODBC Driver

Database

MS Access Driver MS Excel Driver MS SQL Srv Driver Oracle Driver …

Database Database Database

Mapping

<Datasource name, Data file>

Microsoft

Technology

JDBC
Type 1-Driver: JDBC-ODBC Bridge

• This package is in the JDK as default.

• Translates JDBC APIs to ODBC APIs

• Enables the Java applications to interact with any
database supported by Microsoft.

• Provides platform dependence, as JDBC ODBC bridge
driver uses ODBC

• JDBC-ODBC bridge is useful when Java driver is not
available for a database but it is supported by
Microsoft.

• Disadvantages
– Platform dependence (Microsoft)

– The performance is comparatively slower than other drivers

– Require the ODBC driver and the client DB to be on the server.

• Usage: DSN is registered to use connecting DB (a data
source is declared in Control Panel/ODBC Data sources)

JDBC
Type 2-Driver: Native API

• Provides access to the
database through C/C++
codes.

• Developed using native
code libraries

• Native code libraries provide
access to the database, and
improve the performance

• Java application sends a
request for database
connectivity as a normal
JDBC call to the Native API
driver

• Establishes the call, and
translates the call to the
particular database protocol
that is forwarded to the
database

Java Application

Type II JDBC

Driver

Database

SQL Command Result Set

Application

Proprietary Protocol

Native Database Library

JDBC
Type 3-Driver: Network Protocol

• Use a pure Java client and
communicate with a middleware
server using a database-
independent protocol.

• The middleware server then
communicates the client’s
requests to the data source

• Manages multiple Java
applications connecting to
different databases

Java Application

Type III JDBC Driver

Database

Application

Middleware

JDBC

Result Set

JDBC
Type 4-Driver: Native Protocol

• Communicates directly with the
database using Java sockets

• Improves the performance as
translation is not required

• Converts JDBC queries into
native calls used by the particular
RDBMS

• The driver library is required
when it is used and attached with
the deployed application
(sqlserver 2000: mssqlserver.jar,
msutil.jar, msbase.jar; sqlserver
2005: sqljdbc.jar; jtds: jtds.jar …)

• Independent platform

Java Application

Type IV JDBC Driver

Database

Application

use Proprietary protocol

SQL command Result Set

JDBC
Summary

JDBC API
Download Driver & Configure RDBMS

• Download:
– Download Microsoft JDBC Driver for SQL Server - SQL Server | Microsoft Docs

• Configuration

– Using SQLServer Configuration Manager

– Or, services.msc

– Configure ports, protocol

https://docs.microsoft.com/vi-vn/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-2017

JDBC API
• How to connect DB

– Required

• RDBMS: SQL Server

• Driver Connection: sqljdbc4.jar

– Steps

• Load Driver

– using Class.forName method

– Driver string: com.microsoft.sqlserver.jdbc.SQLServerDriver

– Exception: ClassNotFoundException

• Create connection String

– protocol:server://ip:port;databaseName=DB[;instanceName=Instance]

• Open connection

– Connection con = DriverManager.getConnection(url, “user", “pass");

– Exception: SQLException

MSI
Highlight

JDBC API
• How to connect DB

– Implementation

JDBC API
• How to access DB using JDBC API

– Required

• DB is connected

– Steps

• Connect DB using method that you are built

– Check available DB connection

• Create SQL String using DML

• Create Statement

– Statement

– PrepareStatement (pass Parameter with ?)

– CallableStatement

• Execute Query to get ResultSet

• Process the ResultSet

– Notes: must closed all objects that are created after process had

finished

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

JDBC API
Statements

• Sends queries and command to the database

– Ex: “Select * From Registration”

• Is Created from the Connection object

– Statement stmt = con.createStatement();

– Statement stmt = con.createStatement(rsType, rsConcurrency)

• rsType: TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE,

TYPE_SCROLL_SENSITIVE

• rsConcurrency: CONCUR_READ_ONLY, CONCUR_UPDATABLE

– There are 03 types of Statement

• Statement

• PreparedStatement (prepareStatement). Ex:

Select * From Registration Where uName = ?

• CallableStatement (prepareCall()). Ex: {stpInsert (?)}

JDBC API

Prepared Statements

• To execute a Statement object many times, it normally
reduces execution time to use a PreparedStatement
object instead.
PreparedStatement stm = con.prepareStatement(sql);

• Supplying Values for PreparedStatement Parameters:

– To supply values to be used in place of the question mark
placeholders (if there are any) before a PreparedStatement
object is executed.

– One of the setXXX methods is called in the PreparedStatement
class.

stm.setXXX(Cardinal number, values);

– Ex:

• stm.SetInt(1, 5);

• stm.SetString(2, “abc”);

JDBC API

Callable Statements

• To execute the stored procedure, the Callable

Statement is used

– CallableStatement cs

= con.prepareCall("{call stored_p_name(?)}");

JDBC API
• How to access DB

– Implementation

JDBC API
• How to access DB using

– Implementation

JDBC API
• How to access DB

– Implementation

JDBC API
Execute Query

• Used to execute statement and get data from DB

– The executeQuery() method

• Is used to Query commands and stored procedure. Ex:

String strSQL = “Select * From Registration”;

• Returns an object of type ResultSet

ResultSet rs = stmt.executeQuery(strSQL);

– The executeUpdate() method

• Is used to Insert, Update, or Delete commands. Ex

String strSQL = “Insert into Registration Values(“Aptech”, “Aptech”);

• Returns the row of executed validation.

int nRow = stmt.executeUpdate(strSQL);

– The execute() method

• Is use to create and delete DB objects as table, DB ...Ex:

String strSQL = “Drop table Registration”;

stmt.execute(strSQL);

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

MSI
Highlight

JDBC API
Process the Results

• The ResultSet class implements a collection of type Set and allows
to use it to process one row at the time

• Apply to the ResultSet object
– The getXxx (cardinal number/ field name string) of the ResultSet object is used

to get the field value.
• Cardinal number starts with 1

• Xxx is a DataType of the selected field

– The next() method of the ResultSet object is used to process the results from the
DB

– Ex: while(rs.next()) (Point the cursor next row) {

rs.getInt(1) or rs.getInt(“userId”);

rs.getString(1) or rs.getString(“username”); }

– Notes: The field must be accessed in the order

– The 2D Resultset support the access methods to DB as first, isFirst, last, ...

• There is a class ResultSetMetaData that helps to determine the
number, names and types of column in the ResultSet

• Close the connection after used: The close() method is used. Ex:
con.close();

JDBC API
Some methods of ResultSet

Methods Description

getString() Takes column number as an argument and returns value from the

specified column number as a string to the ResultSet object

getInt() Takes column number as an argument and returns the value from

the specified column number as an integer to the ResultSet object

getFloat() Takes column number as an argument and returns the value from

the specified column number as float type to the ResultSet object

getDate() Takes column number as an argument and returns the value from

the specified column number as java.sql.Date to the ResultSet

object

findColumn() Takes a column name as a string parameter and returns the column

index of the specified column name

wasNull() Returns true if the last column value read was SQL NULL

getMetaData() Returns the information about the columns of ResultSet object in a

ResultSetMetaData class

JDBC API

Methods Syntax Description

getColumnCount() int getColumnCount() Returns the number of columns in the

ResultSet object

getColumnName() String getColumnName

(int column)

Takes column number as a parameter and

returns the designated column name

getColumnType() int getColumnType

(int column)

Takes column number as a parameter and

returns the designated column’s SQL type

from java.sql.Types. The types include Array,

char, Integer, Date, and Float

isReadOnly() boolean isReadOnly

(int column)

Takes the column number as a parameter and

returns true if the designated column is not

writable

isSearchable() Boolean isSearchable

(int column)

Takes column number as a parameter and

returns true if the specified column can be

used in where clause.

isNullable() int isNullable

(int column)

Returns the nullability status of the specified

column. The nullability status includes,

columnNullable, columnNoNulls, and

columnNullableUnknown

JDBC API
Some method of ResultSetMetaData

Summary
• How to access database from web

application?

– JDBC

– Relational Database Overview

– JDBC and JDBC Drivers

– JDBC Basics: Processing SQL Statements

– Implement CRUD application using MS SQL

Q&A

Exercises

• Do it again all of demos

• Using servlet to write the programs as the following

requirement

– Present the Login form (naming LoginServlet) with title Login,

header h1 – Login, 02 textbox with naming txtUser and

txtPass, and the Login button

• Rewrite above Login application combining with DB

– Writing the ColorServlet that presents “Welcome to Servlet

course” with yellow in background and red in foreground

– Writing the ProductServlet includes a form with a combo box

containing Servlet & JSP, Struts & JSF, EJB, XMJ, Java Web

Services, and the button with value Add to Cart

Next Lecture
• How to deploy the Web Application to Web

Server?

– Web applications Structure

– Request Parameters vs. Context Parameters vs.

Config/Servlet Parameters

– Application Segments vs. Scope

• How to transfer from resources to others

with/without data/objects?

– Attributes vs. Parameters vs. Variables

– Redirect vs. RequestDispatcher

– RequestDispatcher vs. Filter

Next Lecture

Web based
App - PBL

Web

Day 1, 2, 3, 4, 5, 6 – Login

Servlet, JDBC

Day 7, 8, 9 – Search

Break Down

Day 10, 11 – MVC2

JSP

Day 12, 13, 14, 15 – CUD, Shopping Carts

Sessions

Day 16, 17 – Login

JavaBeans

Day 18, 19, 20 – CRUD

MVC 2 Complete - JSTL - Taglib

Day 21, 22, 23 – Filter

MVC2 Using Filter as Controller

Appendix – Build The Simple Web
Login Page

Appendix – Build The Simple Web
Invalid Page

Appendix – Build The Simple Web
Search Page

Appendix – Build The Simple Web
Servlet

Appendix – Build The Simple Web
DAO

